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1. Introduction

For xe R",and r >0, let B(X, r) be the open ball centered at x with the
Radius r, and BC(X, r) be its complement. The well-known classical Hardy-
Littlewood maximal operatér M is defined by
1
Mf(x)=sup——— ||f dy,
=5y 110Ny

r>0

where f e L} (R”) and |B(x, r)| is the Lebesgue measure of the ball B(x,r).

loc

Let T is a sublinear operator, and satisfies that for any f € Ll(R") with
compact supportand x ¢su pp f,

T ( x)|<cj| ? @)
Slx—

We point out that the condition (1) was first introduced by Soria and Weiss
[20]. The condition (1) are satisfied by many interesting operators in harmonic
analysis, such as the Calderén-Zygmund operators, the Carleson’s maximal
operators, the Fefferman’s singular integrals, the Ricci-Stein’s oscillatory singular

integrals, the Bochner-Riesz means and so on (see [17, 20] for details).
As is well known, the commutator is also an important operator and it
plays a key role in harmonic analysis. Recall that for a locally integrable function b
and a integral operatér T, the commutator formed by b and T is defined by
[b,T]:bT —Tb. The commutators of the fractional maximal operator, the
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fractional integral operator and the Calderén-Zygmund singular integral operator
have been intensively studied, see for more details. In this paper, the maximal

commutator operator M under consideration is of the form
1
M, f(x)=sup——— [[b(x)—Db(y dy,
P -0 |B(X, ) B(~X[’|r) )

for f Ll (R").

To study a class of commutators uniformly, one can also introduce some
sublinear operators with additional size conditions as before. For a function b,

suppose that the commutator operator T, represents a linear or a sublinear

operator, which satisfies that for any f € Ll(R”) with compact support and
xgsuppf,

b(x) — b
ol = [ PO i)iay

The operator T, has been studied in [12, 17].

Let S"* = {Xe R":[x|=1 } is the unit sphere of R"(n>2) equipped
with the normalized Lebesgue measure. Suppose that Q satisfies the following
conditions.

(i) Q is a homogeneous function of degree zero on R". That is,

Q(tx) = Q(x) (2)
forallt>0 and xe R".
(ii) Q has mean zero on S"*. That s,
fa()dx =0, 3
Snfl

where X' = x/|X| forany x#0.

The Marcinkiewicz integral operator of higher dimension s, is defined by

110 (F)x) (ﬂ (F)x) Zdtj ,

Q(x—
P 0= [ 2V g(y)ay,
B(x,t) |X - y|
It is well known that the Littlewood-Paley g -function is a very important

tool in harmonic analysis and the Marcinkiewicz integral is essentially a
Littlewood-Paley g -function. In this paper, we will also consider the commutator

Mg, Which is given by the following expression

where
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1/2
N 2 dt
ug,bf<x>=[nFat<f><xx t—gj |
0
where
QX —
R (D0= [ Y poa)-ly)lt (v)ay.
B(x.t)|X— Y|
On the other hand, the study of Schrédinger operatér L =—A +V recently
attracted much attention. In particular, Shen [21] considered L, estimates for

Schrédinger operators L with certain potentials which include Schrodinger Riesz
1

o 5 .
transforms RjL = Fv L2, j=1,...,n. Then, Dziubannski and Zienkiewicz [10]
X
j

introduced the Hardy type space H t(Rn) associated with the Schrédinger operatdr

L, which is larger than the classical Hardy space Hl(R”), see also [1, 2, 3, 13,
14].

Similar to the classical Marcinkiewicz function, we define the
Marcinkiewicz functions s; , associated with the Schrddinger operator L by

1/2

pro T(x)= T [l(x—y)}Ki(x y)f (y)dy ?—: !

0|B(xt)

where  KE(x,y)=K:(x, y)x-y| and Kl(xy) is the kernel of

1
Ry _9 L2, j=1....n. In particular, when V=0,
OX;
- —v). fIx— -~
Ke(x, y)=KHx, y)x—y|= (x | y), ||nxl Y and K®(x,y) is the kernel of
X—y
o X
Rj =87A 2, j=1...,n.Inthis paper, we write KJ.(X, y): KJ.A(X, y) and

1/2

Hiq f(x)= T [lox=y)K;(x y)f (y)dy f—;

0 [B(x.t)
Obviously, y; are classical Marcinkiewicz functions with rough kernel.

Therefore, it will be an interesting thing to study the property of yig. The main
purpose of this paper is to show that Marcinkiewicz operators with rough kernel
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associated with Schrédinger operators ,ujLﬂ, j=1,...,n are bounded on mixed

Lebesgue space L° (R” ) 1< p<oo.
The commutator of the classical Marcinkiewicz function with rough kernel
is defined by

00 100 =| [

0

2 1/2

Jletx=y) K; (x y)io(x)-b(y)If (y)dy| -5

B(x,t)

The commutator ,ujL,Q'b formed by b e BMO(R") and the Marcinkiewicz

function with rough kernel ; , is defined by

1/2

R dt
/UjL,Q,b f(X) = _[

0

Jlax= y) K (x yfb(x)- by (v)dy| 5

B(xt)

Let feld

IOC(R”). The maximal operator with rough kernel M, is
defined by

M, f(x)= sup|th ﬂQx y)|f(y

It is obvious that when QQ =1, MQ is the Hardy-Littlewood maximal

operator M . For be L'fC(R") the commutator of the maximal operator M, is
defined by

Mas  ()=suplBx.t) * [o(x)-b(y)iolx—y)|f(y)dy

B(x,t)

We find the conditions with beBMO(R") which ensures the
boundedness of the operators ,uijgvb, j=1...,n on mixed Lebesgue space
L*(R") 1< p<oo.

By A < B, we mean that A<CB for some constant C >0, and A~ B
means that A < Band B < A.

2. Definitions and preliminaries.

Throughout the paper, we use the following notations.
For any r>0 and xeR", let B(x,r)={y:ly—x<r} be the ball

centered at x with radius r . Let B = {B(x, r):xeR",r> O} be the set of all such
balls. We also use y. and |E| to denote the characteristic function and the
Lebesgue measure of a measurable set E
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Definition 2.1. For 1< p < oo, a non-negative function w e LlOC(R") is said to be
an A, (R”) weight if

], - sup(é j W(x)dxj {é [l dxjg oo,

BeB

A non-negative local integrable function w is said to be an A weight if
ﬁj‘w(y)dy <Cw(x)ae. xeB
B

for some constant C > 0. The infimum of all such C is denoted by [W]Ai. We

denote A, by the union of all A, (1< p <o) functions,
Theorem 2.1. ([9]) Suppose that € be satisfies the conditions (2) and
Qe Lw(S"_l). Then for every 1< p<oo and We Ap(R”), there is a constant C
independent of f such that

Mo (f)],. <Cf]

Theorem 2.2. ([4]) Suppose that Q be satisfies the conditions (2) and
Qe Lw(S"_l). Let also beBMO(R”). Then for every l<p<oo and

weA, (R” ) there is a constant C independent of f such that
Mo (F) . <C| £

Theorem 2.3. ([7]) Suppose that € be satisfies the conditions (2), (3) and
Qe Lw(S"_l). Then for every 1< p<oo and W e Ap(R”), there is a constant C

e (F N o <C
Theorem 2.4. ([8]) Suppose that € be satisfies the conditions (2), (3) and
Qe Lw(S"’l). Let also beBMO(R"). Then for every 1<p<o and

weA, (R” ) there is a constant C > O independent of f such that

20 (F)] e <Cf]
Note that a nonnegative locally L, integrable function V(X) on R" is said

L

L

independent of f such that

LPw Lpw

to belong to B, (1< <o) if there exists C >0 such that the reverse Holder
inequality

(|B(i’r)| (I\gq(y)dyJ sC[m (IV(y)dyJ (4)

X,r)
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holds for every ball xeR" and r >0, where B(x,r) denotes the open ball
centered at x with radius r; see [21]. It is worth pointing out that the B, class is

that, if V. e B, for some g >1, then there exists ¢ > 0, which depends only n
and the constant C in (4), such that V e B,.. - Throughout this paper, we always
assume that 0=V € B,

The classical Morrey spaces M, , were originally introduced by Morrey

to study the local behavior of solutions to second order elliptic partial differential
equations. For the properties and applications of classical Morrey spaces.

In 2019, Nogayama [19] considered a new Morrey space, with the L°

norm replaced by the mixed Lebesgue norm L” (R”), which is call mixed Morrey

spaces.
We first recall the definition of mixed Lebesgue space defined in [5].

Let p=(p,....,p,)e (0, oo]“_ Then the mixed Lebesgue norm |- ||Lp or
” ) |||_(p1,.‘.,pn) is defined by

1

Ps Pn
P P2

Py
e =0l =| | I 1t |,
R R\R

where f:R" — C is a measurable function. If p; = for some j=1,_n, then
we have to make appropriate modifications. We define the mixed Lebesgue space
Lﬁ(R"): L(pl‘“'p”)(R”) to be the set of all locally integrable functions f with

£ <oo-

First, we review the definition of BMO(R"), the bounded mean oscillation
space. A function f e L,OC(R") belongs to the bounded mean oscillation space

BMO(R") if

= sup
" r>0

If one regards two functions whose dlfference is a constant as one, then the space
BMO(R") is a Banach space with respect to norm ||- The John-Nirenberg

[#lewo =

BMO *
ineugalitiy for BMO yields that for any 1< p<o and f e BMO(R”), the
BMO normof f isequivalent to
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1/q
[fllowor = sup { J -

Recall that for any r):(pl,..., pn)e( oo) , the John-Nirenberg inequality for

mixed norm space [16] shows that the BMO norm of all f e BMO(R”) is also
equivalent to

LP

H(f - fB(x r))ZB(x r)

fil... ., = sup : :
[flovor = sup [ter,

The following property for BMO functions is valid.
Lemma?2.1. Let f e BMO(R”) . Then forall 0<2r <t, we have

‘fB(X,r) - fB(Xlt)‘ <C|f]gyon
As we know, the Hardy-Littlewood maximal operator M is bounded on

LP (R"), 1< p<oo (see [19]), but there is no complete boundedness results for

some other operators on the mixed Lebesgue spaces. To prove the boundedness of
some important operators on the mixed Lebesgue space in a uniform way, we will
give the extrapolation theorems on mixed Lebesgue spaces, which have their own
interest.

The extrapolaton theory on mixed Lebesgue spaces relies on the classical

A, weight (see [11]).

We also need the boundedness of M on mixed norm space LP (R")[lg].
Lemma 2.2. For 1< P <o, there holds

”Mf”Lp(R”)SC”f”Lp(R")'

By F, we mean a family of pair (f,g) of non-negative measurable
functions that are not identical to zero. For such a family S, p>0 and a weight
we Aq , the expression

[f(x)Pw(x)dx<C [g(x)Pw(x)dx , (f,g)eF

R" R"
means that this inequality holds for all pair (f,g)e F if the left hand side is
finite, and the implicated constant depends only on p and A, .

Now we give the extrapolation theorems on the mixed Lebesgue spaces.
The first one is the diagonal extrapolation theorem.

Theorem 2.5. Let 0< py <o and p=(p,,..., p,)€(0,0)" . Let f,ge M(R”)
. Suppose for every W e A, we have
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jf x)Pw(x)dx<C [g(x)*w(x)dx , (f,g)eF. (5)
Rn
Then if, p> p0 , we have
[l o(zr) < Clllp(go). (f.0)eF-
Proof. Without loss of generality, one may assume f is a non-negative function.

We use the Rubio de Francia iteration algorithm presented in .
Let p=p/p, and p'=p'/ p,. By the assumptions and Lemma 2.2, the

maximal operator is bounded on Lﬁ'(R"), so there exists a positive constant B
such that

IMF [ 5 ) <B 5 e
For any non-negative function h, define a new operator Rh by

= M*h(x)
Rh(x)=
( ) kZ:O: 2k Bk

where for k >1 M* denotes k iterations of the maximal operator, and M? is the
identity operator. The operator R satisfies

h(x)< Rh(x), (6)
[RAlls <2[hs ()
|Rh|, <28B.

The inequality [16] is straight-forward. Since
k+1
< h

M(Rh)sz o _232 5 kszE;Rh

k=0
the properties [17] and [18] are consequences of Lemma 2 and the definition of A

. Since the dual of LP(R") is L”(R") , we get

I =1 ],

< Csup{ [1£ () h(x)dx: ] » <1,h=> O} . ©)
Rn

By Holder’s inequality on the mixed Lebesgue spaces and [16], we have
[ £(x)Ph(x dx<cjf x)P Rh(xax <] f [
Rn

|h|||_p <.

©)
In view of (6) and Rh € A, we use (5) with w= Rh(x) to obtain

[f x)P h(x dx<cjf x)P Rh(x dx<C(fg pORh()]dj
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Combining (7) with (9) and using Hélder’s inequality on the mixed Lebesgue
spaces again, we arrive at

[ £(x)™h(x)dx < CHg Po
Rn

SR ~lal R0 a0

Therefore
[(Rn)| 5 =IRh] & <Ch 5 (11)

By taking supremum over all h e L'j’(R”) with ||h[ s <1(8), (10) and (11)
give us the desired conclusion (2.17).
We point out that when n =2, there are different versions of the diagonal

extrapolation theorem [15] and the off-diagonal extrapolation theorem [22] on
mixed Lebesgue spaces, which are different form Theorem 2.5.

By the density of smooth functions with compact support C (R") in the

mixed Lebesgue space L” (R”), 1< p <o (see [5]), one can apply Theorem 2.5 to
the mapping property of some sublinear operators.
Theorem 2.6. Suppose O0< p, < P<oo and T is a sublinear operator such that

for every we A,
[[Tf(z)®w(z)dz<C [|f(z)™w(z)dz , f eCr(R").
R" R"

Then T can be extended to be a bounded operator on LP (R”) .
Proof. By Theorem 2.5, forany f e CZ’(R”), we have

[Tt s <Cllg,»-
Since T is a sublinear operator, we have |T(f )—T(g] £|T(f —g), and hence,
forany f,ge Cf(R”), we have
[Tt =Tgf o <|T(f —g)|s <C|f -
Since CZ’(R”) is dense in LP (R"), the above inequalities guarantee that T can be

extended to be a bounded operator on L" (R”) :

The following corollary is a consequence of Theorem 2.6 and the weighted
boundedness of the corresponding operators.

Corollary 2.1. Let 1< p<co, beBMO(R”), then M, s, My, 1, are all

bounded on Lp(R”) .
Proof. It is well known that M, z,, My, 14, are all sublinear operators, and

bounded on LY (R™) for arbitrary 1< p, <co and we A,, (see for example).
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Since A < A,, Theorem 2.6 implies that M, s, My, 14,, are all bounded on

Lr’(R”) for all p,<P<oo. In view of the arbitrariness of 1< p, <o,

M, £, M, 14, , are also bounded on Lp(R”) forall p,<p<oo.

3. Conclusion. In this paper we study the boundedness of the Marcinkiewicz
operator £, on mixed Lebesgue spaces LP (R”). As an application, we obtain the
boundedness of the commutator of the Marcinkiewicz operator s, , on mixed

Lebesgue spaces Lp(R”).
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